Allosteric inhibition of a zinc-sensing transcriptional repressor: insights into the arsenic repressor (ArsR) family.
نویسندگان
چکیده
The molecular basis of allosteric regulation remains a subject of intense interest. Staphylococcus aureus CzrA is a member of the ubiquitous arsenic repressor (ArsR) family of bacterial homodimeric metal-sensing proteins and has emerged as a model system for understanding allosteric regulation of operator DNA binding by transition metal ions. Using unnatural amino acid substitution and a standard linkage analysis, we show that a His97' NH(ε2)...O=C His67 quaternary structural hydrogen bond is an energetically significant contributor to the magnitude of the allosteric coupling free energy, ∆Gc. A "cavity" introduced just beneath this hydrogen bond in V66A/L68V CzrA results in a significant reduction in regulation by Zn(II) despite adopting a wild-type global structure and Zn(II) binding and DNA binding affinities only minimally affected from wild type. The energetics of Zn(II) binding and heterotropic coupling free energies (∆Hc, -T∆Sc) of the double mutant are also radically altered and suggest that increased internal dynamics leads to poorer allosteric negative regulation in V66A/L68V CzrA. A statistical coupling analysis of 3000 ArsR proteins reveals a sector that links the DNA-binding determinants and the α5 Zn(II)-sensing sites through V66/L68 in CzrA. We propose that distinct regulatory sites uniquely characteristic of individual ArsR proteins result from evolution of distinct connectivities to this sector, each capable of driving the same biological outcome, transcriptional derepression.
منابع مشابه
Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state.
Staphylococcus aureus CzrA is a zinc-dependent transcriptional repressor from the ubiquitous ArsR family of metal sensor proteins. Zn(II) binds to a pair of intersubunit C-terminal alpha5-sensing sites, some 15 A distant from the DNA-binding interface, and allosterically inhibits DNA binding. This regulation is characterized by a large allosteric coupling free energy (DeltaGc) of approximately ...
متن کاملThe SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance.
The SmtB/ArsR family of prokaryotic metalloregulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of di- and multivalent heavy metal ions. Derepression results from direct binding of metal ions by these homodimeric "metal sensor" proteins. An evolutionary analysis, coupled with comparative structural and spectroscopic studies of six Sm...
متن کاملIdentification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni.
Arsenic is commonly present in the natural environment and is also used as a feed additive for animal production. Poultry is a major reservoir for Campylobacter jejuni, a major food-borne human pathogen causing gastroenteritis. It has been shown that Campylobacter isolates from poultry are highly resistant to arsenic compounds, but the molecular mechanisms responsible for the resistance have no...
متن کاملArsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803.
Arsenic is one of the most important global environmental pollutants. Here we show that the cyanobacterium Synechocystis sp. strain PCC 6803 contains an arsenic and antimony resistance operon consisting of three genes: arsB, encoding a putative arsenite and antimonite carrier, arsH, encoding a protein of unknown function, and arsC, encoding a putative arsenate reductase. While arsB mutant strai...
متن کاملAn ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27
Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 425 7 شماره
صفحات -
تاریخ انتشار 2013